Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

low-resolution ASCII-art depiction of the Mandelbrot set
low-resolution ASCII-art depiction of the Mandelbrot set
This is a modern reproduction of the first published image of the Mandelbrot set, which appeared in 1978 in a technical paper on Kleinian groups by Robert W. Brooks and Peter Matelski. The Mandelbrot set consists of the points c in the complex plane that generate a bounded sequence of values when the recursive relation zn+1 = zn2 + c is repeatedly applied starting with z0 = 0. The boundary of the set is a highly complicated fractal, revealing ever finer detail at increasing magnifications. The boundary also incorporates smaller near-copies of the overall shape, a phenomenon known as quasi-self-similarity. The ASCII-art depiction seen in this image only hints at the complexity of the boundary of the set. Advances in computing power and computer graphics in the 1980s resulted in the publication of high-resolution color images of the set (in which the colors of points outside the set reflect how quickly the corresponding sequences of complex numbers diverge), and made the Mandelbrot set widely known by the general public. Named by mathematicians Adrien Douady and John H. Hubbard in honor of Benoit Mandelbrot, one of the first mathematicians to study the set in detail, the Mandelbrot set is closely related to the Julia set, which was studied by Gaston Julia beginning in the 1910s.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


Banach–Tarski paradox
Image credit: Benjamin D. Esham

The Banach–Tarski paradox is a theorem in set-theoretic geometry which states that a solid ball in 3-dimensional space can be split into a finite number of non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. However, the pieces themselves are complicated: they are not usual solids but infinite scatterings of points. A stronger form of the theorem implies that given any two "reasonable" solid objects (such as a small ball and a huge ball) — solid in the sense of the continuum — either one can be reassembled into the other. This is often stated colloquially as "a pea can be chopped up and reassembled into the Sun". (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals